Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Res Pract Thromb Haemost ; 7(1): 100025, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2278318

ABSTRACT

Background: Conflicting results have been reported on platelet activity ex vivo and responsiveness in vitro among patients with COVID-19 with or without thromboembolic complications. Objectives: To assess platelet reactivity in patients with moderate disease at early stages of COVID-19. Methods: We performed a prospective, descriptive analysis of 100 consecutive patients presenting with suspected SARS-CoV-2 infection at University Medical Center Freiburg during the first or second wave of the pandemic. Following polymerase chain reaction testing and compliance with study inclusion criteria, 20 SARS-CoV-2-positive and 55 SARS-CoV-2-negative patients (serving as patient controls) were enrolled. In addition, 15 healthy subjects were included. Platelet reactivity was assessed using whole-blood impedance aggregometry and flow cytometry in response to various agonists. Results: Platelet aggregation was significantly impaired in the patients with COVID-19 compared with that in the patient controls or healthy subjects. The reduced platelet responsiveness in the patients with COVID-19 was associated with impaired activation of GPIIb/IIIa (αIIbß3). In contrast, low expression of P-selectin at baseline and intact secretion upon stimulation in vitro suggest that no preactivation in vivo, leading to "exhausted" platelets, had occurred. The proportion of circulating platelet-neutrophil complexes was significantly higher in the patients with COVID-19 (mean ± SD, 41% ± 13%) than in the patient controls (18% ± 7%; 95% CI, 11.1-34.1; P = .0002) or healthy subjects (17% ± 4%; 95% CI, 13.8-33.8; P < .0001). An analysis of neutrophil adhesion receptors revealed upregulation of CD11b (α-subunit of αMß2) and CD66b (CEACAM8) but not of CD162 (PSGL-1) in the patients with COVID-19. Conclusion: Despite reduced platelet responsiveness, platelet-neutrophil complexes are increased at early stages of moderate disease. Thus, this cellular interaction may occur during COVID-19 without preceding platelet activation.

2.
BMC Infect Dis ; 22(1): 486, 2022 May 23.
Article in English | MEDLINE | ID: covidwho-1862111

ABSTRACT

BACKGROUND: Point-of-care (POC) polymerase chain reaction (PCR) tests have the ability to improve testing efficiency in the Coronavirus disease 2019 (COVID-19) pandemic. However, real-world data on POC tests is scarce. OBJECTIVE: To evaluate the efficiency of a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) POC test in a clinical setting and examine the prognostic value of cycle threshold (CT) on admission on the length of hospital stay (LOS) in COVID-19 patients. METHODS: Patients hospitalised between January and May 2021 were included in this prospective cohort study. Patients' nasopharyngeal swabs were tested for SARS-CoV-2 with Allplex™2019-nCoV (Seegene Inc.) real-time (RT) PCR assay as gold standard as well as a novel POC test (Bosch Vivalytic SARS-CoV-2 [Bosch]) and the SARS-CoV-2 Rapid Antigen Test (Roche) accordingly. Clinical sensitivity and specificity as well as inter- and intra-assay variability were analyzed. RESULTS: 120 patients met the inclusion criteria with 46 (38%) having a definite COVID-19 diagnosis by RT-PCR. Bosch Vivalytic SARS-CoV-2 POC had a sensitivity of 88% and specificity of 96%. The inter- and intra- assay variability was below 15%. The CT value at baseline was lower in patients with LOS ≥ 10 days when compared to patients with LOS < 10 days (27.82 (± 4.648) vs. 36.2 (25.9-39.18); p = 0.0191). There was a negative correlation of CT at admission and LOS (r[44]s = - 0.31; p = 0.038) but only age was associated with the probability of an increased LOS in a multiple logistic regression analysis (OR 1.105 [95% CI, 1.03-1.19]; p = 0.006). CONCLUSION: Our data indicate that POC testing with Bosch Vivalytic SARS-CoV-2 is a valid strategy to identify COVID-19 patients and decrease turnaround time to definite COVID-19 diagnosis. Also, our data suggest that age at admission possibly with CT value as a combined parameter could be a promising tool for risk assessment of increased length of hospital stay and severity of disease in COVID-19 patients.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Point-of-Care Testing , Prospective Studies , Real-Time Polymerase Chain Reaction , Risk Assessment , SARS-CoV-2/genetics , Sensitivity and Specificity
3.
Hamostaseologie ; 41(6): 428-432, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1585711

ABSTRACT

Thrombus formation has been identified as an integral part in innate immunity, termed immunothrombosis. Activation of host defense systems is known to result in a procoagulant environment. In this system, cellular players as well as soluble mediators interact with each other and their dysregulation can lead to the pathological process of thromboinflammation. These mechanisms have been under intensified investigation during the COVID-19 pandemic. In this review, we focus on the underlying mechanisms leading to thromboinflammation as one trigger of venous thromboembolism.


Subject(s)
COVID-19 , Thrombosis , Venous Thromboembolism , Humans , Immunity, Innate , Inflammation , Pandemics , SARS-CoV-2 , Thromboinflammation
4.
J Thromb Thrombolysis ; 53(4): 788-797, 2022 May.
Article in English | MEDLINE | ID: covidwho-1568387

ABSTRACT

The complement system (CS) plays a pivotal role in Coronavirus disease 2019 (COVID-19) pathophysiology. The objective of this study was to provide a comparative, prospective data analysis of CS components in an all-comers cohort and COVID-19 patients. Patients with suspected COVID-19 infection admitted to the Emergency department were grouped for definite diagnosis of COVID-19 and no COVID-19 accordingly. Clinical presentation, routine laboratory and von Willebrand factor (vWF) antigen as well as CS components 3, 4 and activated 5 (C5a) were assessed. Also, total complement activity via the classical pathway (CH50) was determined. Levels of calprotectin in serum were measured using an automated quantitative lateral flow assay. We included 80 patients in this prospective trial. Of those 19 (23.7%) were tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients with COVID-19 had higher levels of CS components 5a and 4 (54.79 [24.14-88.79] ng/ml vs. 35 [23.15-46.1] ng/ml; p = 0.0433 and 0.3772 [± 0.1056] g/L vs. 0.286 [0.2375-0.3748] g/L; p = 0.0168). COVID-19 patients had significantly higher levels of vWF antigen when compared to the control group (288.3 [± 80.26] % vs. 212 [151-320] %; p = 0.0469). There was a significant correlation between CS C3 and 5a with vWF antigen (rs = 0.5957 [p = 0.0131] and rs = 0.5015 [p = 0.042]) in COVID-19 patients. There was no difference in calprotectin plasma levels (4.786 [± 2.397] µg/ml vs. 4.233 [± 2.142] µg/ml; p = 0.4175) between both groups. This prospective data from a single centre all-comers cohort accentuates altered levels of CS components as a distinct feature of COVID-19 disease. Deregulation of CS component 3 and C5a are associated with increased vWF antigen possibly linking vascular damage to alternative CS activation in COVID-19.


Subject(s)
COVID-19 , COVID-19/diagnosis , Emergency Service, Hospital , Humans , Immunologic Factors , Leukocyte L1 Antigen Complex , Prospective Studies , SARS-CoV-2 , von Willebrand Factor/analysis
5.
Clin Res Cardiol ; 111(3): 322-332, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1427245

ABSTRACT

AIMS: Coagulopathy and venous thromboembolism are common findings in coronavirus disease 2019 (COVID-19) and are associated with poor outcome. Timely initiation of anticoagulation after hospital admission was shown to be beneficial. In this study we aim to examine the association of pre-existing oral anticoagulation (OAC) with outcome among a cohort of SARS-CoV-2 infected patients. METHODS AND RESULTS: We analysed the data from the large multi-national Lean European Open Survey on SARS-CoV-2 infected patients (LEOSS) from March to August 2020. Patients with SARS-CoV-2 infection were eligible for inclusion. We retrospectively analysed the association of pre-existing OAC with all-cause mortality. Secondary outcome measures included COVID-19-related mortality, recovery and composite endpoints combining death and/or thrombotic event and death and/or bleeding event. We restricted bleeding events to intracerebral bleeding in this analysis to ensure clinical relevance and to limit reporting errors. A total of 1 433 SARS-CoV-2 infected patients were analysed, while 334 patients (23.3%) had an existing premedication with OAC and 1 099 patients (79.7%) had no OAC. After risk adjustment for comorbidities, pre-existing OAC showed a protective influence on the endpoint death (OR 0.62, P = 0.013) as well as the secondary endpoints COVID-19-related death (OR 0.64, P = 0.023) and non-recovery (OR 0.66, P = 0.014). The combined endpoint death or thrombotic event tended to be less frequent in patients on OAC (OR 0.71, P = 0.056). CONCLUSIONS: Pre-existing OAC is protective in COVID-19, irrespective of anticoagulation regime during hospital stay and independent of the stage and course of disease.


Subject(s)
Anticoagulants/therapeutic use , Blood Coagulation Disorders/drug therapy , COVID-19/mortality , SARS-CoV-2/drug effects , Thromboembolism/drug therapy , Aged , Blood Coagulation Disorders/virology , Comorbidity , Europe , Female , Humans , Male , Middle Aged , Retrospective Studies , Thromboembolism/virology
6.
J Thromb Thrombolysis ; 50(3): 558-566, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-621522

ABSTRACT

COVID-19 is associated with a variety of clinical complications including coagulopathy, which frequently results in venous thromboembolism (VTE). Retrospective analyses reported a markedly increased rate of VTEs in COVID-19. However, most recent studies on coagulopathy in COVID-19 were only focused on critically ill patients, and without suitable control groups. We aimed to evaluate the rate of VTEs in an all-comers cohort with suspected COVID-19 during a 30-days follow-up period. We also studied the level of D-dimers and their association with the course of disease. In our prospective single-center study (DRKS00021206, 03/30/2020), we analyzed 190 patients with suspected COVID-19 admitted to the emergency department between March and April 2020. Forty-nine patients were SARS-CoV-2 positive (25.8%). The 141 SARS-CoV-2-negative patients served as control group. After completion of a 30-days follow-up, VTE was diagnosed in 3 patients of the SARS-CoV-2-positive group (6.1%, amongst these 2 ICU cases) versus 5 patients in the SARS-CoV-2-negative group (3.5%), however the difference was not statistically significant (p = 0.427). 30-days mortality was similar in both groups (6.1% vs. 5%, p = 0.720). Disease severity correlated with the maximum level of D-dimers during follow-up in COVID-19. The rate of VTE was numerically higher in SARS-CoV-2 positive all-comers presenting with suspected COVID-19 as compared to well-matched controls suffering from similar symptoms. VTEs in the COVID-19 group predominantly occurred in ICU courses. The maximum level of D-dimers during follow-up was associated with disease severity in COVID-19, whereas the level of D-dimers at admission was not.


Subject(s)
Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Pulmonary Embolism/epidemiology , Venous Thromboembolism/epidemiology , Venous Thrombosis/epidemiology , Adult , Aged , Aged, 80 and over , Betacoronavirus/pathogenicity , Biomarkers/blood , COVID-19 , Case-Control Studies , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Female , Fibrin Fibrinogen Degradation Products/metabolism , Germany/epidemiology , Host-Pathogen Interactions , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Prospective Studies , Pulmonary Embolism/blood , Pulmonary Embolism/diagnosis , Pulmonary Embolism/virology , Registries , Risk Assessment , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Time Factors , Venous Thromboembolism/blood , Venous Thromboembolism/diagnosis , Venous Thromboembolism/virology , Venous Thrombosis/blood , Venous Thrombosis/diagnosis , Venous Thrombosis/virology
SELECTION OF CITATIONS
SEARCH DETAIL